વિધેય  $f(x) =  - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ અને $g(x)=f^{-1}(x) \,;$ હોય તો $g'(-\frac{7}{6})$ મેળવો.

  • A

    $\frac{1}{5}$

  • B

    $- \frac{1}{5}$

  • C

    $\frac{6}{7}$

  • D

    $ -\frac{6}{7}$

Similar Questions

જો $ [1, 3] $ પર વ્યાખ્યાયિત વિધેય $f(x) = x^3 - 6x^2 + ax + b$  એ $c\,\, = \,\,\frac{{2\sqrt 3 + 1}}{{\sqrt 3 }}$ માટે રોલના પ્રમેયનું પાલન કરે, તો.........

ધારો કે $ f$  એવું વિધેય છે કે બધા વાસ્તવિક $x$  માટે સતત અને વિકલનીય છે.જો બધા $x \in  [2, 4] $ માટે  $ f(2) = -4 $ અને  $f(x) \geq  6$  હોય, તો.......

જો $g(x) = 2f (2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3)$, $\forall  x \in R$ અને $f"(x) > 0, \forall  x \in R$ તો  $g'(x) > 0$ થાય તે માટે  $x \,\in$

જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
  {{x^2}\ln x,\,x > 0} \\ 
  {0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0} 
\end{array}} \right\}$ ,અને $x \in [0,1]$ માં વિધેય $f$ એ  રોલનું પ્રમેય નું પાલન કરતુ હોય તો     

  • [IIT 2004]

ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ  : $f(x)=x^{2}-1,$ $x \in[1,2]$